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Phase synchronization of chaotic attractors with prescribed periodic signals
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Given a chaotic attractor in a dynamical system with dense periodic winda@ysstructurally unstabjeis
it possible to find a periodic driver that will phase synchronize the chaotic attractor? We conjecture that the
answer is typically yes, and we give an example for a funneling chaotic attractor in the Roessler system.
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[. INTRODUCTION In this work we discuss the entrainment of a typical at-
tractor of a structurally unstable dynamical system which
Phase synchronization of low dimensional dynamical sysmay not have a suitable phase. In the case of periodic driv-
tems has been a field of active research recently. Numerousg, phase locking can be defined in a phase-free manner. We
applications have been found, including plasma, laser, fluidghoose a poinP of the periodic driver, and, every time the
and biological experiments. Theoretiddl-5] and experi- periodic driver passes througP, we measure the chaotic
mental[6] studies have been devoted to the synchronizatiomttractor. If all these measurements are confined to a region
of a chaotic attractor with the phase of an externally couple®f the chaotic attractor, we say that the periodic orbit locks
harmonic signal. Phase synchronization of chaos in the preghe chaotic attractofexamples will be given subsequently
ence of two harmonic signals has also been stufigd This definition of phase synchronization with a periodic sig-
Phase synchronization of two coupled chaotic oscillators hagal does not depend on the particular choice of the p@int

received much attention as well, both in the@8} and ex- In this paper we investigate the following question. Con-
perimentg9,10]. sider a dynamical system with a parameder

In order to define phase synchronism, assume that we are
given two signalsa andb, such that phase,(t) and 6,(t) dx/dt=R(a;x), (1)

can be defined for the two signals. The phaggg(t) are
assumed to be continuous in time; i.e., they are not takehaving dense periodic windows in the bifurcation diagram
modulo 2. If for two times t,>t;, we have 6, p(t,) versusa. Given a value for the parametay where the sys-
— 0,(t) =2Nr, then we say that the phagg , has ex- tem has a chaotic attractor, is it possible to find a periodic
ecutédN counter-clockwise rotations between timGa_ndtz_ driver that will phase lock the chaotic attractor? We Conjec-
In terms of the phase difference of the two time sedemd  ture that the answer is typically yes for the dynamical sys-
b, A6(t)=064(t)— 6,(t), there is phase synchronism be- tems having dense periodic windows. In this case, it is pos-
tween the signala andb if sible to find a periodic orbit with parameters in the vicinity
of those of the chaotic attractor that will phase lock the cha-
otic attractor.
—C=Af(t)—0,<C
12

for some constantS and 6, (typically C~ ) and all timet.
Thus, A 6 does not increase or decrease without bound. This
condition is also known in the literature agsong phase syn-
chronismor phase locking

If signal a, for example, is measured from a chaotic sys-
tem, then defining goodphased,(t) may be a challenging
task. It is possible to define a phase for an attractor which in>
some projection appears to be shaped like an annulus. Thi
type of attractor is callephase coherert2]. The projection
of an orbit on this attractor continually circles around a cen-
ter of rotation in the hole of the annulus. A possible phase of
an orbit on a phase coherent attractor can be defined usin
the polar angle about the center of rotation. Several example:
of phase coherent attractors are knof@+5,8. However, ” ‘ , , ,
most attractors do not satisfy the requirements of phase co 0242 0.244 0.246 0.248 0.25 0.252
herence, and examples of attractors with ill-defined phase are @
also known[2,4]. These attractors are call@thase incoher- FIG. 1. Bifurcation diagram of the Roessler system described by
ent attractors. In the Roessler systefunneling attractors  Eq. 2. Our choice of chaotic attractor has 0.25, and our choice
[2,4] are phase incoherent. of driver hasa=0.244.
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FIG. 2. (a) x-y projection of the chaotic Roessler syst¢see
Eq. (2)] with a=0.25, and(b) the corresponding-z projection.(c)
and (d) show, respectively, the-y and thex-z projections of our
choice of periodic driver which is the Roessler systemaat

=0.244.
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Ry(a;x)=—-y—z,

Ry(a;x)=x+ay,

2
R,(a;x)=0.4+2z(x—8.5).

Figure 1 shows a bifurcation diagram of our model system
versus the parametar The bifurcation diagram is generated
by plotting local maxima of/(t) for orbits computed at dif-
ferent values of. The funneling chaotic attractor subject to
our investigation haa=0.25. Based on the bifurcation dia-
gram in Fig. 1, we choose as periodic driving for our funnel-
ing attractor the Roessler systemaat 0.244. Thus, we con-
sider the following coupled dynamical systems

dx;/dt=R(0.25X;) + e(X; — X5), (©)

wherex{ ,= (x; {1),y1(t),21 A1), €(x;—X,) is a coupling
term, ande is a parameter describing the coupling strength.
Many choices of coupling terms between the chaotic oscilla-
tor and the periodic driver are possible; we believe that our
results apply to a large class of coupling terms. Figures
2(a,b showx-y andx-z projections of the undriven funnel
Roessler attractor, and Figg.cg)) showx-y andx-z projec-
tions of the chosen driver.

We numerically investigate the Roessler system for a set

of parameters where a funneling attractor is obserfdd
Previous studie$4] point out that this attractor has an ill-

Ill. RESULTS

defined phase, and that phase locking with a harmonic signal We investigate phase synchronization versus the coupling
is not manifested. However, as we show in this study, drivingstrengthe by sampling the chaotic attractor every time the
the funneling attractor with an appropriate choice of periodicperiodic driver passes through its maximum valueyfft).
driver yields phase locking. Our model system is theFigures 3al,bl,clshow thex-y projection of the samplings

Roessler attractor given

RT(a;x) = (R(a;x),Ry(a;X),R(a;x)), and

by x"(t) = (x(t),y (1), (1)),
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of the chaotic attractor at the period of the drivitigack
dotg, with the x-y projection of the chaotic attractor as the

FIG. 3. x-y projection of the
sampling at the period of the
driver (black dots of the en-
trained chaotic Roessler attractor
(gray background with (al) €
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=0.0498. Figurega?), (b2), and
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FIG. 4. Bifurcation diagram vs the coupling strengtka) of the entrained chaotic Roessler attractor, &mdf the sampling map at the
period of the driver.

gray background, for three different values of the couplinghigh period which is, in the parameter space, arbitrarily close
strengthe. In Fig. 3al) we present the case &=0.02, to the chaotic attractor. Such drivers would not induce very
where the sampling is spread over the whole attractor, andramatic changes in the apparent shape of the chaotic attrac-
phase synchronization is not manifested. Figua2B3shows tor. The unstable-unstable crisis is known to play a crucial
they coordinate of the iterates of the sampling mgp[i.e.,  role in the phase synchronization of phase coherent attractors
they coordinates of the black dots in Figa)], versus time  [3]. Here the unstable-unstable crisis is demonstrated in Figs.
t/T, whereT denotes the period of the driver. The sampling3(c1,2 which correspond t&=0.0498, just before the cri-
for e=0.02 remains spread throughout the attractor as timsis. The sampling of the chaotic attractor is localized only for
progresses. In Fig.(B1), corresponding tee=0.05, phase intervals of time[see Fig. 82)] separated by brief excur-
synchronization for the perturbed attractor is clearly discernsions over large regions of the chaotic attractor. If the
able. The sampling of the chaotic attractor at the period ofinstable-unstable crisis takes placesate., then the aver-
the driver is localized in a small region. In this latter case,age duration of the synchronization intervals just before the
one may use for example the polar angle of xag (or the  crisis scales liké )~ (e—€.)? [11]. The critical exponeny
X-z) projection to define phases for the periodic driver andis negative, and its value depends on particular features of
the entrained chaotic attractor, and these phases would revehE attractor in unstable-unstable crisis.
locking of the two systems. Other definitions of phases Figure 4a) shows the bifurcation diagram of the driven
[4,10] would also apply. Plotting the iterates of the samplingRoessler attractdisee Eq. 3 versus the coupling parameter
map versus time in Fig.(B2) we see that the sampling stays €. As in Fig. 1, the bifurcation diagram is generated by plot-
in a localized region of the chaotic attractor for all time.  ting local maxima ofy,(t) for orbits with different values of

As the perturbed attractor becomes phase synchronizesl Figure 4b) shows the bifurcation diagram of the map
with increasing coupling strength, it also undergoes an obtained by sampling the chaotic attractor at the period of
unstable-unstable crisis that changes its shape, resemblitige driver.(When the driver passes through the maximum
the periodic drivefsee Figs. ®1) and Zc)]. How severely value ofy,(t), we take a measurement of the chaotic attrac-
the crisis reshapes the chaotic attractor depends on the choit®.) At e~0.05, a crisis reshapes the chaotic attractor to
of the driver. Theoretically, for dynamical systems with three-band chaos, and simultaneously, phase synchronization
dense periodic windows, one can find a periodic driver ofoccurs(see Fig. 4. The sampling of the chaotic attractor past

047201-3



BRIEF REPORTS PHYSICAL REVIEW B8, 047201 (2003

the crisis is localized in the upper band; this corresponds tperiodic window structure, such that only large windows are
the situation described in Fig(i&l). A similar scenario ap- discernable. Figure 4 plays the role of the “synchronization
plies ate~0.002, where again the chaotic attractor undertongue” plot for our coupled dynamical systems, and de-
goes crisis, and simultaneously, phase synchronization. IR€nds on the choice of the coupling term between the chaotic
this latter case, however, the sampling of the chaotic attractdttractor and.the periodic driver. o

at the period of the drivefas the driver passes through its In conclusion, we have shown that phase synchronization

. | is localized in th ter band. Th of chaos is a general phenomenon, not restricted to the class
maximum value of/,) is localized in the center band. Thus, of the phase coherent chaotic attractors. Phase synchroniza-

in this phase synchronized state, the difference between thg,, hecomes manifest for chaotic attractors of structurally
phase of the driver and the phase of the entrained chaotignstable dynamical systems driven by selected periodic driv-
attractor is not small, but nevertheless bounded. In fact, sincers. In practice, finding an appropriate driver signal may not
our model system has dense periodic windows, we believee a very difficult problem. As we demonstrate numerically,
that one can find such windowsvhere crisis and phase the same dynamical system for a different set of parameters
synchronization occur simultaneouslgrbitrarily close to  may have a periodic orbit that successfully phase synchro-
e=0. In practice, noise may wash out some of the smalhizes the chaotic attractor.
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