
PHYSICAL REVIEW E 68, 047201 ~2003!
Phase synchronization of chaotic attractors with prescribed periodic signals
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Given a chaotic attractor in a dynamical system with dense periodic windows~i.e., structurally unstable!, is
it possible to find a periodic driver that will phase synchronize the chaotic attractor? We conjecture that the
answer is typically yes, and we give an example for a funneling chaotic attractor in the Roessler system.
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I. INTRODUCTION

Phase synchronization of low dimensional dynamical s
tems has been a field of active research recently. Nume
applications have been found, including plasma, laser, fl
and biological experiments. Theoretical@1–5# and experi-
mental@6# studies have been devoted to the synchroniza
of a chaotic attractor with the phase of an externally coup
harmonic signal. Phase synchronization of chaos in the p
ence of two harmonic signals has also been studied@7#.
Phase synchronization of two coupled chaotic oscillators
received much attention as well, both in theory@8# and ex-
periments@9,10#.

In order to define phase synchronism, assume that we
given two signalsa andb, such that phasesua(t) andub(t)
can be defined for the two signals. The phasesua,b(t) are
assumed to be continuous in time; i.e., they are not ta
modulo 2p. If for two times t2.t1, we have ua,b(t2)
2ua,b(t1)52Np, then we say that the phaseua,b has ex-
ecutedN counter-clockwise rotations between timet1 andt2.
In terms of the phase difference of the two time seriesa and
b, Du(t)5ua(t)2ub(t), there is phase synchronism b
tween the signalsa andb if

2C<Du~ t !2u* <C

for some constantsC andu* ~typically C;p) and all timet.
Thus,Du does not increase or decrease without bound. T
condition is also known in the literature asstrong phase syn
chronismor phase locking.

If signal a, for example, is measured from a chaotic sy
tem, then defining agoodphaseua(t) may be a challenging
task. It is possible to define a phase for an attractor whic
some projection appears to be shaped like an annulus.
type of attractor is calledphase coherent@2#. The projection
of an orbit on this attractor continually circles around a ce
ter of rotation in the hole of the annulus. A possible phase
an orbit on a phase coherent attractor can be defined u
the polar angle about the center of rotation. Several exam
of phase coherent attractors are known@2–5,8#. However,
most attractors do not satisfy the requirements of phase
herence, and examples of attractors with ill-defined phase
also known@2,4#. These attractors are calledphase incoher-
ent attractors. In the Roessler system,funneling attractors
@2,4# are phase incoherent.
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In this work we discuss the entrainment of a typical
tractor of a structurally unstable dynamical system wh
may not have a suitable phase. In the case of periodic d
ing, phase locking can be defined in a phase-free manner
choose a pointP of the periodic driver, and, every time th
periodic driver passes throughP, we measure the chaoti
attractor. If all these measurements are confined to a re
of the chaotic attractor, we say that the periodic orbit loc
the chaotic attractor~examples will be given subsequently!.
This definition of phase synchronization with a periodic s
nal does not depend on the particular choice of the poinP.

In this paper we investigate the following question. Co
sider a dynamical system with a parametera,

dx/dt5R~a;x!, ~1!

having dense periodic windows in the bifurcation diagra
versusa. Given a value for the parametera, where the sys-
tem has a chaotic attractor, is it possible to find a perio
driver that will phase lock the chaotic attractor? We conje
ture that the answer is typically yes for the dynamical s
tems having dense periodic windows. In this case, it is p
sible to find a periodic orbit with parameters in the vicini
of those of the chaotic attractor that will phase lock the c
otic attractor.

FIG. 1. Bifurcation diagram of the Roessler system described
Eq. 2. Our choice of chaotic attractor hasa50.25, and our choice
of driver hasa50.244.
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II. MODEL

We numerically investigate the Roessler system for a
of parameters where a funneling attractor is observed@4#.
Previous studies@4# point out that this attractor has an il
defined phase, and that phase locking with a harmonic si
is not manifested. However, as we show in this study, driv
the funneling attractor with an appropriate choice of perio
driver yields phase locking. Our model system is t
Roessler attractor given byxT(t)5„x(t),y(t),z(t)…,
RT(a;x)5„Rx(a;x),Ry(a;x),Rz(a;x)…, and

FIG. 2. ~a! x-y projection of the chaotic Roessler system@see
Eq. ~2!# with a50.25, and~b! the correspondingx-z projection.~c!
and ~d! show, respectively, thex-y and thex-z projections of our
choice of periodic driver which is the Roessler system ata
50.244.
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Rx~a;x!52y2z,

Ry~a;x!5x1ay, ~2!

Rz~a;x!50.41z~x28.5!.

Figure 1 shows a bifurcation diagram of our model syst
versus the parametera. The bifurcation diagram is generate
by plotting local maxima ofy(t) for orbits computed at dif-
ferent values ofa. The funneling chaotic attractor subject
our investigation hasa50.25. Based on the bifurcation dia
gram in Fig. 1, we choose as periodic driving for our funn
ing attractor the Roessler system ata50.244. Thus, we con-
sider the following coupled dynamical systems

dx1 /dt5R~0.25;x1!1e~x12x2!, ~3!

dx2 /dt5R~0.244;x2!, ~4!

wherex1,2
T 5„x1,2(t),y1,2(t),z1,2(t)…, e(x12x2) is a coupling

term, ande is a parameter describing the coupling streng
Many choices of coupling terms between the chaotic osci
tor and the periodic driver are possible; we believe that
results apply to a large class of coupling terms. Figu
2~a,b! show x-y and x-z projections of the undriven funne
Roessler attractor, and Figs. 2~c,d! showx-y andx-z projec-
tions of the chosen driver.

III. RESULTS

We investigate phase synchronization versus the coup
strengthe by sampling the chaotic attractor every time t
periodic driver passes through its maximum value ofy2(t).
Figures 3~a1,b1,c1! show thex-y projection of the samplings
of the chaotic attractor at the period of the driving~black
dots!, with the x-y projection of the chaotic attractor as th
r

g

FIG. 3. x-y projection of the
sampling at the period of the
driver ~black dots! of the en-
trained chaotic Roessler attracto
~gray background! with ~a1! e
50.02, ~b1! e50.05, and~c1! e
50.0498. Figures~a2!, ~b2!, and
~c2! represent the correspondin
graphs of they coordinate of the
sampling map,ys , vs time t/T,
whereT denotes the period of the
driving signal.
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FIG. 4. Bifurcation diagram vs the coupling strengthe ~a! of the entrained chaotic Roessler attractor, and~b! of the sampling map at the
period of the driver.
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gray background, for three different values of the coupl
strengthe. In Fig. 3~a1! we present the case ofe50.02,
where the sampling is spread over the whole attractor,
phase synchronization is not manifested. Figure 3~a2! shows
the y coordinate of the iterates of the sampling map,ys @i.e.,
they coordinates of the black dots in Fig. 3~a1!#, versus time
t/T, whereT denotes the period of the driver. The sampli
for e50.02 remains spread throughout the attractor as t
progresses. In Fig. 3~b1!, corresponding toe50.05, phase
synchronization for the perturbed attractor is clearly disce
able. The sampling of the chaotic attractor at the period
the driver is localized in a small region. In this latter ca
one may use for example the polar angle of thex-y ~or the
x-z) projection to define phases for the periodic driver a
the entrained chaotic attractor, and these phases would re
locking of the two systems. Other definitions of phas
@4,10# would also apply. Plotting the iterates of the sampli
map versus time in Fig. 3~b2! we see that the sampling stay
in a localized region of the chaotic attractor for all time.

As the perturbed attractor becomes phase synchron
with increasing coupling strengthe, it also undergoes an
unstable-unstable crisis that changes its shape, resem
the periodic driver@see Figs. 3~b1! and 2~c!#. How severely
the crisis reshapes the chaotic attractor depends on the c
of the driver. Theoretically, for dynamical systems wi
dense periodic windows, one can find a periodic driver
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high period which is, in the parameter space, arbitrarily clo
to the chaotic attractor. Such drivers would not induce v
dramatic changes in the apparent shape of the chaotic at
tor. The unstable-unstable crisis is known to play a cruc
role in the phase synchronization of phase coherent attrac
@3#. Here the unstable-unstable crisis is demonstrated in F
3~c1,2! which correspond toe50.0498, just before the cri
sis. The sampling of the chaotic attractor is localized only
intervals of time@see Fig. 3~c2!# separated by brief excur
sions over large regions of the chaotic attractor. If t
unstable-unstable crisis takes place ate5ec , then the aver-
age duration of the synchronization intervals just before
crisis scales likêt&;(e2ec)

g @11#. The critical exponentg
is negative, and its value depends on particular feature
the attractor in unstable-unstable crisis.

Figure 4~a! shows the bifurcation diagram of the drive
Roessler attractor@see Eq. 3# versus the coupling paramete
e. As in Fig. 1, the bifurcation diagram is generated by pl
ting local maxima ofy1(t) for orbits with different values of
e. Figure 4~b! shows the bifurcation diagram of the ma
obtained by sampling the chaotic attractor at the period
the driver. ~When the driver passes through the maximu
value ofy2(t), we take a measurement of the chaotic attr
tor.! At e'0.05, a crisis reshapes the chaotic attractor
three-band chaos, and simultaneously, phase synchroniz
occurs~see Fig. 4!. The sampling of the chaotic attractor pa
1-3
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the crisis is localized in the upper band; this correspond
the situation described in Fig. 3~b1!. A similar scenario ap-
plies at e'0.002, where again the chaotic attractor und
goes crisis, and simultaneously, phase synchronization
this latter case, however, the sampling of the chaotic attra
at the period of the driver~as the driver passes through i
maximum value ofy2) is localized in the center band. Thu
in this phase synchronized state, the difference between
phase of the driver and the phase of the entrained cha
attractor is not small, but nevertheless bounded. In fact, s
our model system has dense periodic windows, we beli
that one can find such windows~where crisis and phas
synchronization occur simultaneously! arbitrarily close to
e50. In practice, noise may wash out some of the sm
J.
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periodic window structure, such that only large windows a
discernable. Figure 4 plays the role of the ‘‘synchronizati
tongue’’ plot for our coupled dynamical systems, and d
pends on the choice of the coupling term between the cha
attractor and the periodic driver.

In conclusion, we have shown that phase synchroniza
of chaos is a general phenomenon, not restricted to the c
of the phase coherent chaotic attractors. Phase synchro
tion becomes manifest for chaotic attractors of structura
unstable dynamical systems driven by selected periodic d
ers. In practice, finding an appropriate driver signal may
be a very difficult problem. As we demonstrate numerica
the same dynamical system for a different set of parame
may have a periodic orbit that successfully phase synch
nizes the chaotic attractor.
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